Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity, Antioxidant Properties, Phenolic Content and Amino Acid Profiles of Fucus spiralis L. Protein Hydrolysate Fractions
نویسندگان
چکیده
Food protein-derived hydrolysates with multi-bioactivities such as antihypertensive and antioxidant properties have recently received special attention since both activities can play significant roles in preventing cardiovascular diseases. This study reports, for the first time, the angiotensin I-converting enzyme (ACE)-inhibition and antioxidant properties of ultrafiltrate fractions (UF) with different molecular weight ranges (<1, 1-3 and ≥3 kDa) obtained from Fucus spiralis protein hydrolysate (FSPH) digested with cellulase-bromelain. The amino acids profile, recovery yield, protein, peptide and total phenolic contents of these FSPH-UF, and the in vitro digestibility of F. spiralis crude protein were also investigated. FSPH-UF ≥3 kDa presented remarkably higher ACE-inhibition, yield, peptide and polyphenolic (phlorotannins) contents. Antioxidant analysis showed that FSPH-UF <1 kDa and ≥3 kDa exhibited significantly higher scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion-chelating (FIC) activity. FSPH-UF ≥3 kDa had also notably higher ferric reducing antioxidant power (FRAP). Strong correlations were observed between ACE-inhibition and antioxidant activities (FIC and FRAP). The results suggest that ACE-inhibition and antioxidant properties of FSPH-UF may be due to the bioactive peptides and polyphenols released during the enzymatic hydrolysis. In conclusion, this study shows the potential use of defined size FSPH-UF for the prevention/treatment of hypertension and/or oxidative stress-related diseases.
منابع مشابه
Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis) by-products hydrolysate by enzymatic hydrolysis
In the present study, we investigated to the antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities of the northern shrimp (Pandalus borealis) by-products (PBB) hydrolysates prepared by enzymatic hydrolysis. The antioxidant and ACE inhibitory activities of five enzymatic hydrolysates (alcalase, protamex, flavourzyme, papain, and trypsin) of PBB were evaluated by the 2, 2′-a...
متن کاملAngiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis
Synthetic angiotensin I-converting enzyme (ACE-I) inhibitors can have undesirable side effects, while natural inhibitors have no side effects and are potential nutraceuticals. A protein-rich fraction from chia (Salvia hispanica L.) seed was hydrolyzed with an Alcalase-Flavourzyme sequential system and the hydrolysate ultrafiltered through four molecular weight cut-off membranes (1 kDa, 3 kDa, 5...
متن کاملSeparation and Characterization of Antioxidative and Angiotensin Converting Enzyme Inhibitory Peptide from Jellyfish Gonad Hydrolysate.
The gonad of jellyfish (RhopilemaesculentumKishinouye), containing high protein content with a rich amino acid composition, is suitable for the preparation of bioactive peptides. Jellyfish gonad was hydrolysed with neutral protease to obtain jellyfish gonad protein hydrolysate (JGPH), which was then purified sequentially by ultrafiltration, gel filtration chromatography, and RP-HPLC. The peptid...
متن کاملAntioxidant and antihypertensive properties of liquid and solid state fermented 1 lentils 2 3
26 The effect of liquid (LSF) and solid state fermentation (SSF) of lentils for production 27 of water-soluble fractions with antioxidant and antihypertensive properties was 28 studied. LSF was performed either spontaneously (NF) or by Lactobacillus plantarum 29 (LP) while SSF was performed by Bacillus subtilis (BS). Native lactic flora in NF 30 adapted better than L. plantarum to fermentative ...
متن کاملAntihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats.
Angiotensin I-converting enzyme (ACE) plays a crucial role in the regulation of blood pressure as well as cardiovascular function. ACE catalyzes the conversion of angiotensin I to vasoconstrictor angiotensin II, and also inactivates the antihypertensive vasodilator bradykinin. Inhibition of ACE mainly results an overall antihypertensive effect. Food protein-derived peptides can have ACE-inhibit...
متن کامل